

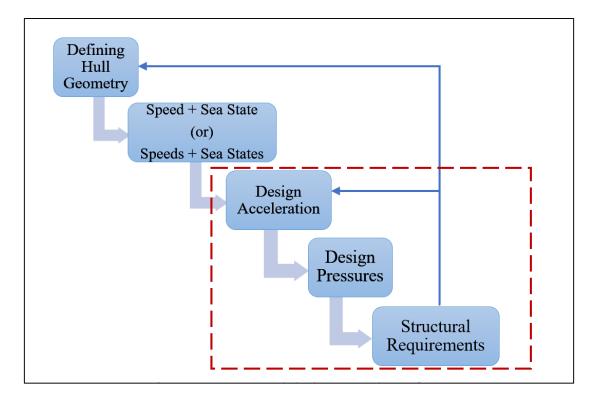
Comparative Study of Requirements for High Speed Crafts

Supervisor:	DrIng. Thomas Lindemann, University of Rostock
Internship tutor:	DrIng. Jörg Peschmann, DNVGL
Reviewer:	Jean-Baptiste R. G. Souppez, Solent University, UK

Nandar Hlaing

Factors forcing DNVGL to improve HSLC Rules

- Design of HSC primarily relying on Class Rules (High costs and time consumption to perform experiments and numerical simulations)
- Rapid development of HSC design and construction
- Introduction of new concepts and techniques
- Faster and larger HSCs being built
- Competition between different Classes


Objectives

- To study the background of formulations in HSLC rules
- To verify the results presented in SSC Report (to compare DNV-HSLC and DNVGL-HSLC Rules)
- To identify application range of DNVGL-HSLC Rules
- To evaluate possibility of merger of DNVGL-HSLC and DNVGL-Naval Rules
- To identify shortcomings in the current DNVGL-HSLC rules

- Background study of HSLC rules
- Verification of SSC Report 439
- Comparison of DNVGL-HSLC and DNVGL-Naval Rules
- Conclusion and proposals

Structural Design of High Speed Crafts

- Optimization of Strength (to resist loads) and Weight (for cost effectiveness and envionmental prospect)
- Involve several inter-steps and repititions
- Generally satisfy the procedures in figure.

Background of DNVGL-HSLC rules

Design acceleration – based on Savitsky & Brown (1976)

Design pressures – based on Allen & Jones (1978)

Structural requirements – application of beam theory

Design Acceleration

	U		
		Lower limit	Upper limit
 Savitsky & Brown (1976) 	$\Delta_{\rm lt}/(0.01L_{\rm m})^3$	3531	8829
Avg acceleration (g's) in:	L/B	3	5
Avy acceleration (g s) III.	Deadrise, deg	10	30
$H_{1/2}$ τ 5 β V_{1} L/b	(β)	10	50
$\tilde{n}_{cg} = 0,0104 \left(\frac{H_{1/3}}{b} + 0.084\right) \frac{\tau}{4} \left(\frac{5}{3} - \frac{\beta}{30}\right) \left(\frac{V_k}{\sqrt{L}}\right)^2 \frac{L/b}{C_{\Delta}}$	Trim angle, deg	3	7
	(τ)	5	/
1/Nth highest acceleration:	H _s /B	0.2	0.7
$\widetilde{n}_{\perp} \approx \widetilde{n}_{\perp} (1 + \ln N)$ $C_{\Delta} = \frac{\Delta}{h^3}$	V _{kn} /sqrt(L _m)	3.6	10.86
$\tilde{n}_{1/N} = \tilde{n}_{cg} (1 + \ln N)$			

• **DNVGL-HSLC** rules

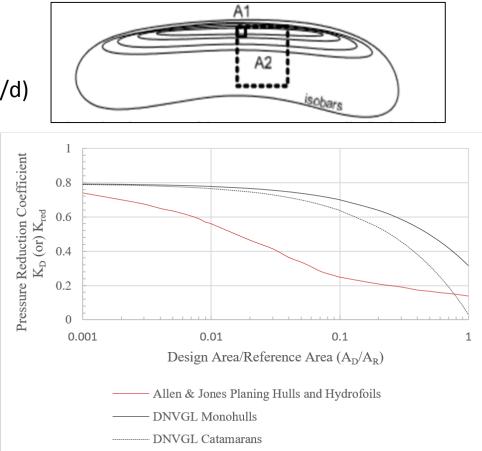
Highest 1/100th average acceleration (5.6 times \tilde{n}_{cq}) and Trim = 4 degree

$$a_{cg} = \frac{k_h g_0}{1650} \left(\frac{H_{si}}{B_{wl2}} + 0.084 \right) \left(50 - \beta_{cg} \right) \left(\frac{V_i}{\sqrt{L}} \right)^2 \frac{L B_{wl2}^2}{\Delta}$$

Range of Applicability

Design Pressures

• Allen & Jones (1978)

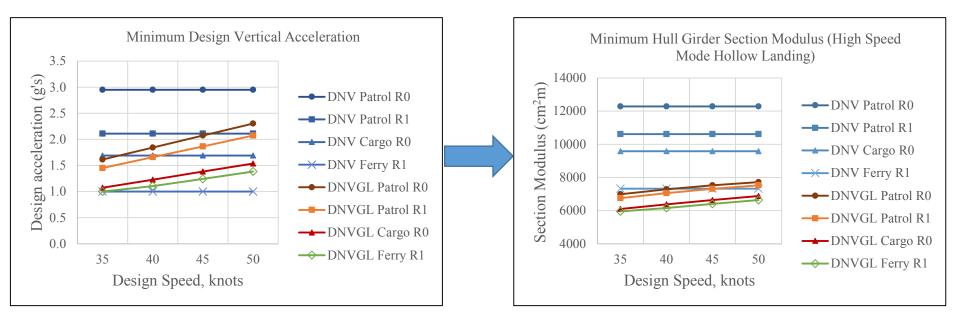

Key ideas

- formation of reference area ($A_R = 0.7\Delta/d$)
- momentary pressure distribution

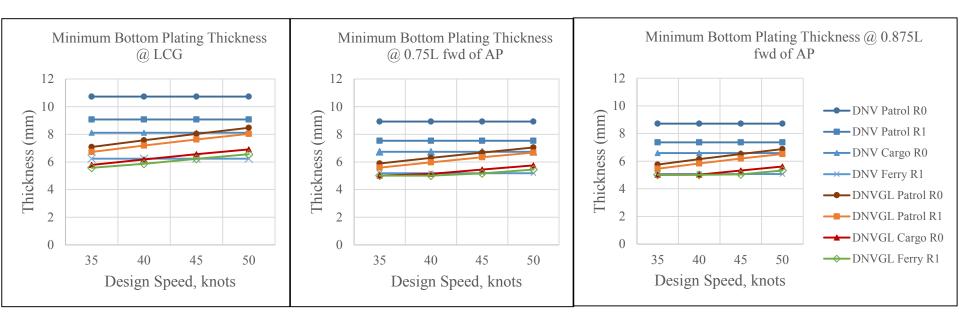
$$P_D = \frac{\Delta N_Z}{0.14 A_R} K_D F$$

DNVGL-HSLC rules

$$p_{sl} = \frac{\Delta a_{cg}}{0.14 A_{ref}} K_{red} K_l K_\beta$$


Verification of SSC Report-439 (Comparison of DNV-HSLC and DNVGL-HSLC Rules)

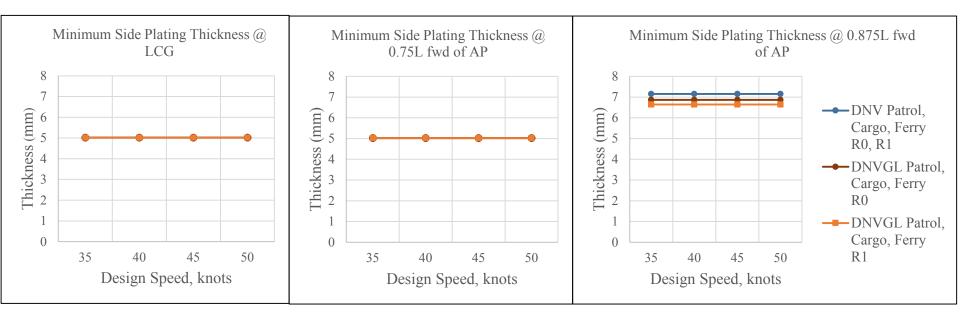
- 61m Aluminium Monohull
- Speed range 35-50 knots (V/sqrt(L) between 4.5 and 6.4)
- Four different ship type & service notations Patrol R0, Patrol R1, Cargo R0, Ferry R1


Description	Symbol	Unit	Value
Rule length	L	m	61
Moulded breadth	В	m	12.9
Draught	Т	m	2.7
Full load displacement	Δ	ton	950
Breadth at waterline	B _{WL}	m	11.7
Position of LCG		m	25.7
Dead rise angle at LCG	β _{cg}	degree	17

Comparison of Veritcal Design Acceleration and Hull Girder Section Modulus

- Two kinds of hull bending moments
- Displacement Mode Cases (Still water + Sagging , Still water + Hogging) are F(ship parameters, wave coefficient)
- High Speed Mode Cases (Hollow landing , Crest landing) are F(ship parameters, vertical acceleration)

Comparison of Bottom Plating Thickness



□ Heaviest scantlings near to LCG than forward parts due to

- vertical impact
- significant reduction in deadrise angle

Reduction of scantlings in DNVGL except for Ferry R1

Comparison of Side Plating Thickness

Heavier forward side elements subjecting to impact pressure

□ Aft side elements subjecting to sea pressure only

Similar scantlings between DNV and DNVGL

Major Differences between DNV and DNVGL

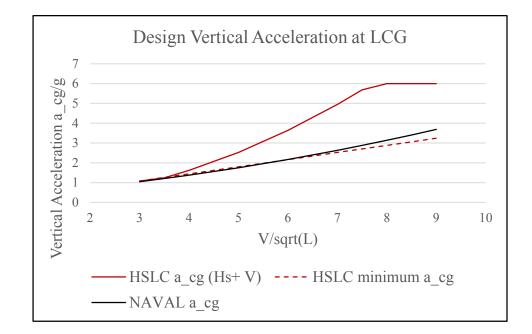
DNV-HSLC	DNVGL -HSLC			
 Distance from port + wave height = service area 	• Distance from port defines service area.			
$a_{cg} = \frac{V}{\sqrt{L}} \frac{3.2}{L^{0.76}} f_g g_0$	$a_{cgi} = \frac{k_h g_0}{1650} \left(\frac{H_{si}}{B_{wl2}} + 0.084\right) (50 - \beta_{cg}) \left(\frac{V_i}{\sqrt{L}}\right)^2 \frac{L B_{wl2}^2}{\Delta}$ $a_{cgmin} = C_{HSLC} C_{RW} \frac{V_i}{\sqrt{L}}$			
• $\frac{V}{\sqrt{L}} \le 3$				
• a_{cg} depends only on service area and ship type (f _g)	 a_{cg} depends on wave height and ship parameters. 			
 Constant design acceleration, pressures, and scantlings 	Acceleration increases as the speed increases.			
over a range of speeds where $\frac{V}{\sqrt{L}}$ > 3	 Speed reduction needs to be considered in case of high wave heights. 			
 too conservative for lower speeds and less for higher speeds 				
• Not fixing $\frac{V}{\sqrt{L}}$ may lead to more unrealistic values				

Comparison of DNVGL-HSLC and DNVGL-Naval Rules

- Three high speed crafts with lengths between 30m to 80m
- 1st 37.5m Patrol Boat
 - Aluminium monohull
 - Deep-V, hard chine
- 2nd 61.9m Fast Attack Craft
 - Steel monohull
 - round-bilge
- 3rd − 79.9m Offshore Patrol Boat
 - Steel monohull
 - round-bilge

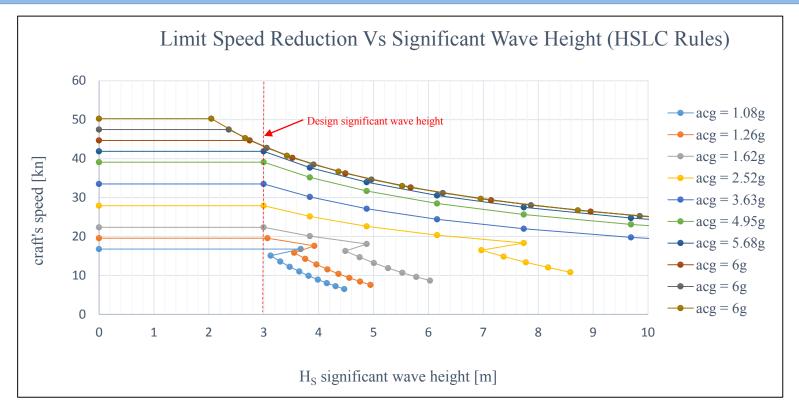
Description	Symbol	Unit	1 st	2 nd	3 rd
Length over all	LOA	m	37.5	61.9	79.9
Rule length	L	m	31.19	56.3	71
Moulded breadth	В	m	7.2	9.5	11.52
Moulded depth	D	m	5	6	7
Height above baseline	н	m	9.935	10.8	14.9
Draught	т	m	1.85	2.6	4.2
Full load displacement	Δ	ton	148.5	580	1670
Breadth at waterline	B _{WL}	m	6.92	8.65	11.17
Dead rise angle at LCG	β_{cg}	degree	18	12	11
Significant wave height	H _s	m	3	4.6	6.5

Checking with Savitsky Limits


	Savitsky's Limit	37.5m	61.9m	79.9m
$\Delta_{it}/(0.01L_m)^3$	3531 – 8829	4894 (Yes)	3250 (No)	4665 (Yes)
L/B	3 – 5	4.5 (Yes)	6.5 (No)	6.4 (No)
Deadrise, deg (β)	10 - 30	18 (Yes)	12 (Yes)	11 (Yes)
Trim angle, deg (τ)	3 – 7	4 (Yes)	4 (Yes)	4 (Yes)
H _s /B	0.2 – 0.7	0.4 (Yes)	0.5 (Yes)	0.6 (Yes)

□ Load calculations are done for a range of speeds (V/sqrt(L) between 3 and 9) to decide application limits.

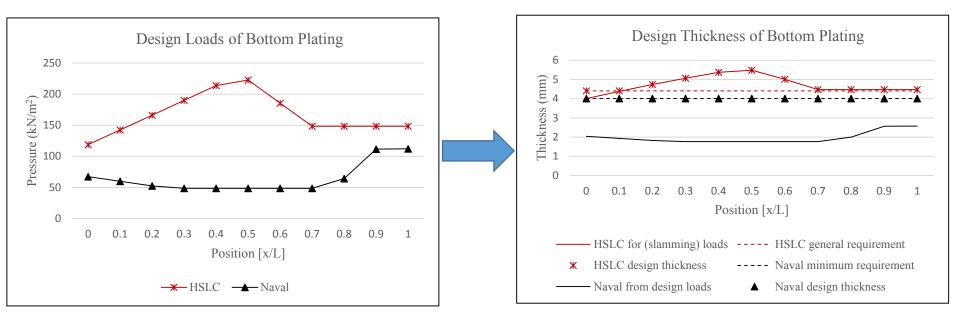
□ Scantling calculations are done only for design speeds (29 knots, 34 knots, 30 knots).


Comparison are done for all vessels. Results for only 37.5m patrol boat are shown below.

Comparison of Design Acceleration

Minimum acceleration values from HSLC rules are used for comparison with Naval rules.
 Wave height-dependent accelerations are used to find the application range of HSLC rules.
 Maximum acceleration is reached when the speed is between 42 and 45 knots.

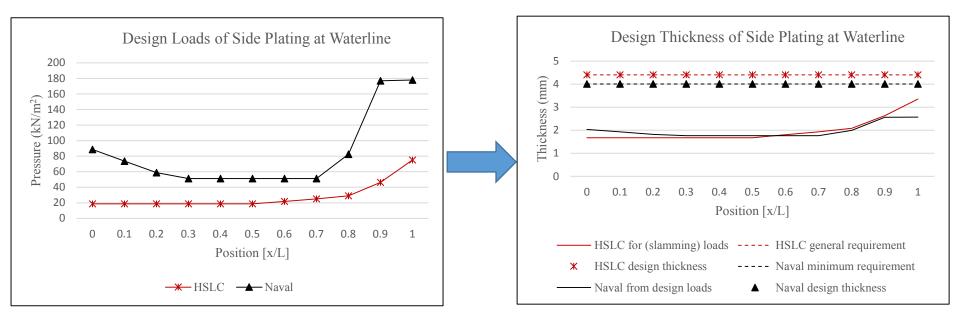
Limit Speed Reduction in Higher Significant Wave Heights


□ Maximum possible design speed ~ 42 knots at 6g (for design waveheight)

□ Formation of kinks around 17 knots (Switch of formulations at V/sqrt(L) = 3)

Reduction of design speeds

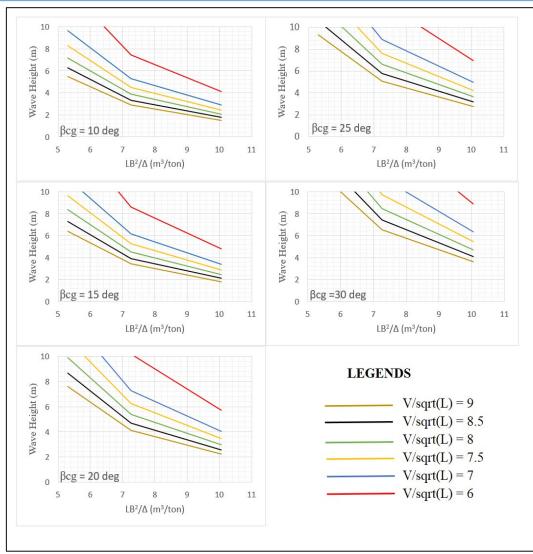
□ For acg=1.08g, 17 knots at 3m and 14 knots at 3.2m


Comparison of Bottom Design Loads and Scantlings

Different distribution and absolute values of load and scantlings $p_{sl} = \frac{1}{0.14 A_{ref}}$ \Box HSLC Rules – Reduction factor K_{red} increases as the element area decreases. □ Naval Rules – C_{A} (max) = 2 $p_{SL} = C_A c_{\alpha} c_{SL} (0.2 v_0 + 0.6 \sqrt{L})^2$ - constant load for all element areas < 5m² $C_A = 1 + \frac{5}{4}$ - design element area of the ship = $0.264m^2$

 $-K_{red}K_{l}K_{\beta}$

Comparison of Side Design Loads and Scantlings


General thickness requirements in both rules are higher than thickness for design loads.

□ Same thickness required for different design loads.

Difference of permissible stresses – 225. 37 N/mm² in Naval rules

- 162 N/mm² in HSLC rules

Limit Speeds for Applicability of DNVGL HSLC Rules

- □ Smoother lines are expected if more data are available Generally decides maximum speed that can be designed by DNVGL HSLC rules Based on maximum acceleration 6g, practical design accelerations differ □ 2g-3g for smaller crafts, 1g-1.5g for larger crafts (in Koelbel, 2000) Only for structural design (crew safety and comfort to be exclusively considered)
- □ Strictly valid for monohull HSCs

Proposals for Improvements in DNVGL HSLC Rules

□ Allowance for higher trim angles

- Equilibrium trim angle = 4 degree
- 2 degree increase in trim cause 50% higher acceleration

Inclusion of Savitsky's Limits

- applicability is decided only by the speed currently
- V > 7.16 Δ^{0.1667} knots

Revisions of Allen & Jones done by Razola et al. (2014)

- Comparison with experimental results, agreement observed only for panels with high aspect ratios near to the centerline
- addition of transverse distribution to contribute light weight
- correction factor for low aspect ratios (transversely framed hulls)

Possibility of Merger?

□ Agreements in side design loads and scantlings

- each set of rules being well tuned
- adjust of permissible stress
- Disagreements in bottom design loads and scantlings
 - based on different background theories
 - different physics on load expectation
- DNVGL Naval Rules
 - Designated for longer vessels and larger stiffener spacings
 - Small bottom loads due to larger panel areas and less vertical motions
 - heavier scantlings close to waterline due to wave impact
- DNVGL HSLC Rules
 - more suitable for small crafts
 - shorter crafts subjected to more vertical motions
 - heavier bottom elements to resist high peak pressures from vertical impact _

- X No Merger

Choice of Appropriate Rules

Both DNVGL Naval Rules and DNVGL HSLC rules should be kept to cover a whole range of ships.

□Not easy to choose appropriate class rules only by ship type and speed

Should consider the followings:

- size of the ship
- expected behavior (high speed displacement mode or planning mode)
- Savitsky's Limits
- stiffening arrangement
- etc

Three Main Points of Master Thesis

- Differences and improvements between DNV and DNVGL HSLC rules are studied.
- Applicability limits of DNVGL HSLC rules are developed for monohulls and
- possible improvements are proposed.
- Merger of HSLC rules and Naval rules is not recommended and it is important to choose the right design method to design specific ships.